Quadratische Funktionen erkunden/Die Scheitelpunktform: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
| Zeile 81: | Zeile 81: | ||
<iframe scrolling="no" title="Welche Sportart beschreibt die Funktion?" src="https://www.geogebra.org/material/iframe/id/zy2M28MS/width/700/height/709/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false" width="700px" height="709px" style="border:0px;"> </iframe> | <iframe scrolling="no" title="Welche Sportart beschreibt die Funktion?" src="https://www.geogebra.org/material/iframe/id/zy2M28MS/width/700/height/709/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false" width="700px" height="709px" style="border:0px;"> </iframe> | ||
{{Quadratische Funktionen erkunden}} | {{Quadratische Funktionen erkunden}} | ||
[[Datei:Pfeil Hier geht's weiter.png|rahmenlos|200px|rechts|link={{BASEPAGENAME}}/Quadratische Funktionen erkunden/Die Parameter der Normalform]] | |||
Version vom 27. Februar 2018, 19:25 Uhr
| In diesem Kapitel des Lernpfads wirst du Experte für die Scheitelpunktform quadratischer Funktionen. Du kannst 1. selbstständig mithilfe der vorliegenden Applets reale Flugkurven, Gebäude oder Phänomene aus der Natur modellieren, |
Aufgabe 1
- ! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter d !! Parameter e
Aufgabe 2
Merke
Terme quadratischer Funktionen können in der Form angegeben werden (wobei a ≠ 0). Diese Darstellungsform nennt man Scheitelpunktform, da sich direkt aus dem Term der Scheitelpunkt ablesen lässt. Er hat die Koordinaten .
Aufgabe 3
{{{2}}}
Aufgabe 4
{{{2}}}
Erstellt von: --Carsten (Diskussion) 15:24, 5. Nov. 2016 (CET)
Bearbeitet von: Elena Jedtke (Diskussion)
