Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen
Main>Hans-Georg Weigand  | 
				Main>Michael Schuster   (Menü angepasst)  | 
				||
| Zeile 1: | Zeile 1: | ||
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">'''[[Potenzfunktionen|Start]] - [[Potenzfunktionen Einführung|Einführung]] - [[Potenzfunktionen 1. Stufe|1. Stufe]] - 2. Stufe - [[Potenzfunktionen 3. Stufe|3. Stufe]] - [[Potenzfunktionen 4. Stufe|4. Stufe]] - [[Potenzfunktionen 5. Stufe|5. Stufe]]'''</div>  | <div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">  | ||
'''[[Potenzfunktionen|Start]] - [[Potenzfunktionen Einführung|Einführung]] - [[Potenzfunktionen 1. Stufe|1. Stufe]] - [[Potenzfunktionen 2. Stufe|2. Stufe]] - [[Potenzfunktionen 3. Stufe|3. Stufe]] - [[Potenzfunktionen 4. Stufe|4. Stufe]] - [[Potenzfunktionen 5. Stufe|5. Stufe]] - [[Potenzfunktionen Test|Test]]'''</div>  | |||
== Die Graphen der Funktionen mit f(x) = x<sup>-n</sup>, n <small>∈</small> IN ==  | == Die Graphen der Funktionen mit f(x) = x<sup>-n</sup>, n <small>∈</small> IN ==  | ||
Version vom 21. Februar 2009, 02:06 Uhr
Die Graphen der Funktionen mit f(x) = x-n, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
| Vorlage:Arbeiten | 
Die Datei [INVALID] wurde nicht gefunden. | 
Parabel und Hyperbel
Du hast nun Potenzfunktionen mit den Gleichungen und kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle. Sie haben deshalb eigene Bezeichnungen:
Die Graphen von Funktionen mit  und einer natürlichen Zahl n heißen Parabeln, oder genauer: . 
Für  heißt der Graph Normalparabel; für  dann nennt man den Graphen kubische Grundparabel (oder Parabel dritter Ordnung).
Die Graphen von Funktionen mit und einer natürlichen Zahl n heißen Hyperbeln (n-ter Ordnung). Diese haben die x- und die y-Achse als Asymptoten.
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
| Die Datei [INVALID] wurde nicht gefunden. | 
Teste dein Wissen
Die Graphen von f(x) = a*x-n, mit a ∈ IR
Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
| Vorlage:Arbeiten | Die Datei [INVALID] wurde nicht gefunden. | 
| Die Datei [INVALID] wurde nicht gefunden. | 
