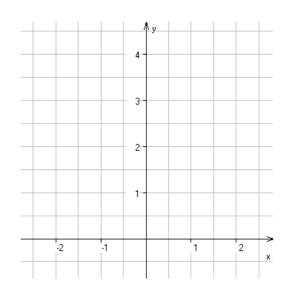
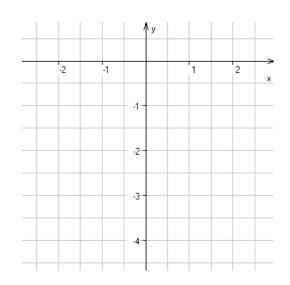
Quadratische Funktionen	Station 2	y = ax ²	Seite 1	
-------------------------	-----------	---------------------	---------	--

Station 2:


Die Normalparabel

Aufgabe 1:

Fülle die Wertetabellen der folgenden Funktionen aus, trage die Punkte ins Koordinatensystem ein und zeichne den Graphen.


a)
$$y = x^2$$

х	-2	-1	0	1	2
У					

b)
$$y = -x^2$$

х	-2	-1	0	1	2
У					

Quadratische Funktionen Station 2 $y = ax^2$ Seite 2
--

Vereinfachung:

Wenn du den Funktionswert z.B. für x = 2 kennst, was weißt du dann über den Funktionswert an der Stelle x = -2?

- > f(2) ____ f(-2)
- > **Allg**.: f(x) _____ f(-x)

Basiswissen:

- Der Graph der Funktion $y = x^2$ heißt Normalparabel.
- Die Schaubilder anderer quadratischer Funktionen heißen Parabeln.
- Alternative Schreibweisen für z.B. $y = x^2$:

>
$$f(x) = x^2$$
 (also ist $f(x)$ dasselbe wie y)

$$\Rightarrow$$
 $x \mapsto x^2$ (*lies*: x wird zugeordnet x^2)

also: Wertemenge W =

Aufgabe 2: EIGENSCHAFTEN DER NORMALPARABEL

- Sie verläuft _____ der x-Achse, d.h. f(x) ____ 0 für alle $x \in \mathbb{R}$.
- Sie ist _____ zur y-Achse, d.h. f(x) ____ f(-x) für alle $x \in \mathbb{R}$.
- Der Schnittpunkt S(/) der Normalparabel mit der y-Achse ist der
 Punkt; er heißt Scheitel(punkt).
- Der Graph _____ im 2. Quadranten und _____ im 1. Quadranten.