Jahrgangsstufe 11 Mathematik / LK

Leistungsnachweis Nr. 3 vom 26.3 2014

Name:

Thema: Stochastik (mehrstufige Zufallsexperimente)

Lehrer: C. Schmitt Bearbeitungszeit: 90 Minuten

Hilfsmittel: Taschenrechner (ohne Grafik; nicht programmierbar), Formelsammlung Beachte: a) Wie vereinbart muss der Rechenweg bei allen Aufgabenstellungen

) wie vereindart muss der Rechenweg dei allen Aufgabenstellunge

nachvollziehbar sein.

b) Wahrscheinlichkeiten immer in Prozent (2 Dezimale) angeben.

c) Zwei Formpunkte; insgesamt 50+2 Punkte

Aufgaben:

- An einer Glücksbude auf dem Jahrmarkt steht ein Glücksrad. Das Rad ist in fünf gleich große Sektoren aufgeteilt, die mit 1 bis 5 gekennzeichnet sind.
 - a) Es wird dreimal gedreht. Bestimmen Sie die Wahrscheinlichkeit, eine "555" zu erhalten.
 - b) Bestimmen Sie die Wahrscheinlichkeit, beim zweimaligen Drehen höchstens eine 4 zu erhalten (mit Baumdiagramm).
 Argumentieren Sie zur Probe auch mit dem Gegenereignis.
 - c) Berechnen Sie die Wahrscheinlichkeit, beim 100-maligen Drehen wenigstens eine 5 zu erhalten (*Argumentieren Sie bitte ohne Verwendung des Gegenereignisses und skizzieren Sie wenigstens ansatzweise den Baum*).
 - d) Die Wahrscheinlichkeit bei unendlich vielen Drehungen wenigstens eine vier zu erhalten ist sicherlich 100%; begründen Sie dies bitte mit Hilfe der geometrischen Reihe (ebenfalls ohne Verwendung des Gegenereignisses).
 - e) Entscheiden Sie, wie oft das Rad mindestens gedreht werden muss, damit die Wahrscheinlichkeit, wenigstens eine 3 zu erhalten, größer als 95% ist.
 - f) Durch fünfmaliges Drehen erzeugt man eine fünfstellige Zahl. Berechnen Sie die Wahrscheinlichkeit, dass diese Zahl 3 gleiche Ziffern enthält?

(0,5+2,5+5+4+5+6 Punkte)

2) Ein Kasten enthält zwei schwarze, vier rote, elf weiße und drei grüne Kugeln.

Es werden vier Kugeln nacheinander ohne Zurücklegen gezogen. Berechnen Sie bitte die Wahrscheinlichkeit, vier verschiedene Farben zu erhalten (mit geeignetem Baumdiagramm; das Zeichnen des oberen Teiles genügt).

(6 Punkte)

und bei 3 Treffern 9a €.

3) Philipp schießt auf eine Torwand und trifft mit einer Wahrscheinlichkeit von $\frac{3}{7}$.

Er vereinbart mit Julia folgendes Spiel:

Er schießt dreimal auf die Torwand und bezahlt pro Spiel an Julia a² €. Er erhält von Julia bei einem Treffer a €, bei 2 Treffern 4a €

Berechnen Sie a so, dass das Spiel fair ist.

(6 Punkte)

- 4) Anna und Vincent werfen abwechselnd zwei Würfel (ideale Würfel mit 6 Seiten);
 - es gewinnt, wer als erster einen 6er-Pasch wirft. Untersuchen Sie, ob es egal ist, wer anfängt.
 - a) Gehen Sie bei einer ersten Überlegung davon aus, dass jeder maximal zweimal werfen darf; zeichnen Sie den Baum und berechnen Sie die jeweiligen Gewinn-Wahrscheinlichkeiten. Erläutern Sie Ihr Ergebnis.
 - b) Nun wird geworfen bis zur Entscheidung, wer gewonnen hat (Baum jetzt nicht mehr erforderlich aber ordentliche Berechnung und Erläuterung).

(5+10 Punkte)