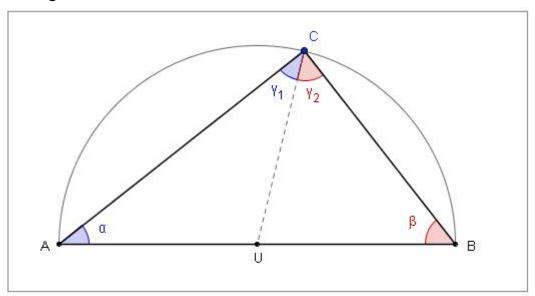

1. Grundbegriffe:

Ein Dreiecke, das einen 90°-Winkel besitzt, heißt rechtwinkliges Dreieck. Die beiden Schenkel des rechten Winkels heißen Katheten. Die Seite, die dem rechten Winkel gegenüberliegt, heißt Hypotenuse.

- a) Zeichne den rechten Winkel ein!
- b) Bezeichne die Dreiecksseiten!

2. Aufgabe: Klicke nun auf den Link zur Aufgabe 2!


Durch das Verschieben des Punktes S kannst du erkennen, dass der Punkt C immer auf	einem
geometrischen Objekt liegt. Welches Objekt ist das?	
Schaue nun genau hin: Kannst du die Lage und die Größe des Objekts beschreiben?	
Der Satz des Thales: (Die folgenden Kästen füllen wir gemeinsam aus!)	
Besitzt ein Dreieck bei C einen rechten Winkel, dann liegt C auf	
Definition: Thaleskreis	
Genauso gilt die Umkehrung des Satzes:	
dann ist das Dreieck ABC rechtwinklig, wobei C der Scheitel des rechten Winkels ist.	

www.mathematik-
digital.de

Der Satz des Thales

Rechtwinklige Dreiecke

3. Aufgabe: Satz des Thales – Der Beweis

Begründe, weshalb die Strecke [CU] das Di unterteilt!	reieck ABC in zwei gleichschenklige Dreiecke
	$\Rightarrow \Delta AUC$ ist gleichschenklig
	⇒ ΔUBC ist gleichschenklig
Wo treten die Winkel α und β nochmals auf	?? Wie setzt sich der Winkel γ zusammen?
Berechne nun die Winkelsumme im Dreiechnen?	k ABC. Wie lässt sich daraus der Winkel γ
4. Aufgabe (Nur für Profis)	
Der Punkt C liegt nun nicht mehr auf dem T	Γhaleskreis.
In welchem Gebiet muss C liegen, damit γ \mathfrak{g}	größer als 90° ist?
In welchem Gebiet muss C liegen, damit γ l	kleiner als 90° ist?